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Abstract

We propose a new probabilistic approach to information
retrieval based upon the ideas and methods of statisti-
cal machine translation. The central ingredient in this
approach is a statistical model of how a user might dis-
till or \translate" a given document into a query. To
assess the relevance of a document to a user's query, we
estimate the probability that the query would have been
generated as a translation of the document, and factor
in the user's general preferences in the form of a prior
distribution over documents. We propose a simple, well
motivated model of the document-to-query translation
process, and describe an algorithm for learning the pa-
rameters of this model in an unsupervised manner from
a collection of documents. As we show, one can view
this approach as a generalization and justi�cation of
the \language modeling" strategy recently proposed by
Ponte and Croft. In a series of experiments on TREC
data, a simple translation-based retrieval system per-
forms well in comparison to conventional retrieval tech-
niques. This prototype system only begins to tap the
full potential of translation-based retrieval.

1 Introduction

When a person formulates a query to a retrieval system,
what he is really doing is distilling an information need
into a succinct query. In this work, we take the view
that this distillation is a form of translation from one
language to another: from documents, which contain
the normal super
uence of textual fat and connective
tissue such as prepositions, commas and so forth, to
queries, comprised of just the skeletal index terms that
characterize the document.

We take this view not because it is an accurate model
of how a user decides what to ask of an information
retrieval system, but because it turns out to be a use-
ful expedient. By thinking about retrieval in this way,

we can formulate tractable mathematical models of the
query generation process, models that naturally account
for many of the features that are critical to modern high
performance retrieval systems, such as term weighting
and query expansion. Moreover, statistical translation
models for information retrieval can be implemented in
a quite straightforward way, and our experiments with
these models demonstrate very promising empirical be-
havior.

We begin by detailing a conceptual model of infor-
mation retrieval. In formulating a query to a retrieval
system, we imagine that a user begins with an informa-
tion need. This information need is then represented
as a fragment of an \ideal document"|a portion of the
type of document that the user hopes to receive from
the system. The user then translates or \distills" this
ideal document fragment into a succinct query, select-
ing key terms and replacing some terms with related
terms: replacing pontiff with pope, for instance.

Summarizing the model of query generation,

1. The user has an information need =.

2. From this need, he generates an ideal document
fragment d=.

3. He selects a set of key terms from d=, and gener-
ates a query q from this set.

One can view this imaginary process of query form-
ulation as a corruption of the ideal document. In this
setting, the task of a retrieval system is to �nd those
documents most similar to d=. In other words, retrieval
is the task of �nding, among the documents comprising
the collection, likely preimages of the user's query. Fig-
ure 1 depicts this model of retrieval in a block diagram.

We have drawn Figure 1 in a way that suggests an
information-theoretic perspective. One can view the
information need = as a signal that gets corrupted as
the user U distills it into a query q. That is, the query-
formulation process represents a noisy channel, corrupt-
ing the information need just as a telephone cable cor-
rupts the data transmitted by a modem. Given q and
a model of the channel|how an information need gets
corrupted into a query|the retrieval system's task is
to identify those documents d that best satisfy the in-
formation need of the user.
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Figure 1. Model of query generation and retrieval

More precisely, the retrieval system's task is to �nd
the a posteriori most likely documents given the query;
that is, those d for which p(d jq; U) is highest. By
Bayes' law,

p(d jq; U) =
p(q jd; U) p(d j U)

p(q j U)
: (1)

Since the denominator p(q j U) is �xed for a given query
and user, we can ignore it for the purpose of ranking
documents, and de�ne the relevance �q(d) of a docu-
ment to a query as

�q(d) = p(q jd; U)| {z }
query-dependent

p(d j U)| {z }
query-independent

: (2)

Equation (2) highlights the decomposition of relevance
into two terms: �rst, a query-dependent term mea-
suring the proximity of d to q, and second, a query-
independent or \prior" term, measuring the quality of
the document according to the user's general prefer-
ences and information needs. Though in this work we
take the prior term to be uniform over all documents,
we imagine that in real-world retrieval systems the prior
will be crucial for improved performance, and for adapt-
ing to the user's needs and interests. At the very least,
the document prior can be used to discount short doc-
uments, or perhaps documents in a foreign language.

High-performance document retrieval systems must
be sophisticated enough to handle polysemy and
synonymy|to know, for instance, that pontiff and
pope are related terms. The �eld of statistical trans-
lation concerns itself with how to mine large text
databases to automatically discover such semantic re-
lations. Brown et al. [3, 4] showed, for instance, how a
system can \learn" to associate French terms with their
English translations, given only a collection of bilingual
French/English sentences. We shall demonstrate how,
in a similar fashion, an IR system can, from a collec-
tion of documents, automatically learn which terms are

We use the convention that boldface roman letters refer to collec-
tions of words such as documents or queries, while italic roman letters
refer to individual terms. Thus p(q jd) refers to the probability of
generating a single query word from an entire document d.

related, and exploit these relations to better rank doc-
uments by relevance to a query.

The rest of the paper proceeds as follows. Section 2
outlines some antecedents to this work, and describes in
greater detail the relationship between information re-
trieval and statistical translation. Section 3 introduces
two speci�c models of translation from documents to
queries. Section 4 explains how to estimate the param-
eters of such models automatically from a collection
of documents. Section 5 presents results of several ex-
periments on widely-used benchmarks in information
retrieval. These experimental results demonstrate the
competitiveness of translation-based retrieval, compared
to standard t�df vector space techniques. We conclude
in Section 6 with some further discussion of this ap-
proach and directions for future research.

2 Background and Related Work

There is a large literature on probabilistic approaches
to information retrieval, and we will not attempt to
survey it here. Instead, we focus on the language mod-
eling approach introduced recently by Ponte and Croft
[10, 9], which is closest in spirit to the present work.
To each document in the collection, this approach as-
sociates a probability distribution p(� jd) over terms;
using the terminology developed in the �eld of speech
recognition, Ponte and Croft call this distribution a
\language model." The probability of a term t given
a document is related to the frequency of t in the doc-
ument. The probability of a query q = q1; q2; : : : qm

is just the product of the individual term probabilities,
p(q jd) =

Q
i
p(qi jd). The relevance of a document d

to a query q is presumed to be monotonically related
to p(q jd).

The language modeling approach represents a novel
and theoretically motivated approach to retrieval, which
Ponte and Croft demonstrate to be e�ective. However,
this framework does not allow the capability to model
di�erent forms or styles of queries, nor does it directly
address the important issues of synonymy and polysemy :
multiple terms sharing similar meanings and the same
term having multiple meanings. In formulating a sta-
tistical translation-based approach to IR, we aim to de-
velop a general statistical framework for handling these
issues.

The inspiration and foundation for the present work
comes from statistical machine translation|an area of
research that until now has existed independently of
information retrieval. It would take us too far a�eld
to present an overview of the motivation and methods
of statistical translation. Instead, we refer the reader
to two articles [3, 4] outlining the IBM work that �rst
developed the idea of statistical machine translation.
We will, however, brie
y describe the general form of
the IBM statistical translation models, illustrated for
the case of translating from French into English. These
models are comprised of translation probabilities t (f j e)
for each English word e translating to each French word
f , fertility probabilities to model the number of French
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words that an English word can generate, and distortion

probabilities for introducing a dependence on relative
word order in the two languages. These parameters are
used to form a model p(f ; a j e) for generating a French
sentence f = ff1; f2 : : : ; fmg from an English sentence
e = fe1; e2; : : : ; eng in terms of a hidden alignment a
between the words in the two sentences.

Brown et al. propose a series of increasingly com-
plex and powerful statistical models of translation, the
parameters of which are estimated by a bootstrapping
procedure. We refer to [4] for a detailed presentation
of these models, including the mathematical details of
training them using the EM algorithm. In the next sec-
tion we discuss analogous models for query generation.

3 Two Models of Document-Query Translation

Suppose that an information analyst is given a news
article and asked to quickly generate a list of a few
words to serve as a rough summary of the article's topic.
As the analyst rapidly skims the story, he encounters
a collection of words and phrases. Many of these are
rejected as irrelevant, but his eyes rest on certain key
terms as he decides how to render them in the summary.
For example, when presented with an article about Pope
John Paul II's visit to Cuba in 1998, the analyst decides
that the words pontiff and vatican can simply be
represented by the word pope, and that cuba, castro
and island can be collectively referred to as cuba.

In this section we present two statistical models of
this query formation process, making speci�c indepen-
dence assumptions to derive computationally and sta-
tistically e�cient algorithms. While our simple query
generation models are mathematically similar to those
used for statistical translation of natural language, the
duties of the models are qualitatively di�erent in the
two settings. Document-query translation requires a
distillation of the document, while translation of natu-
ral language will tolerate little being thrown away.

3.1. Model 1: A mixture model

We �rst consider the simplest of the IBM translation
models for the document-to-query mapping. This model
produces a query according to the following generative
procedure. First we choose a length m for the query,
according to the distribution  (m jd). Then, for each
position j 2 [1 : : :m] in the query, we choose a position i
in the document from which to generate qj , and gener-
ate the query word by \translating" di according to the
translation model t (� j di). We include in position zero of
the document an arti�cial \null word," written <null>.
The purpose of the null word is to generate spurious or
content-free terms in the query (consider, for example,
a query q = Find all of the documents: : :).

Let's now denote the length of the document by
jd j = n. The probability p(q jd) is then the sum over

all possible alignments, given by

p(q jd) =
 (m jd)

(n+ 1)m

nX
a1=0

� � �

nX
am=0

mY
j=1

t (qj j daj ): (3)

Just as the most primitive version of IBM's trans-
lation model takes no account of the subtler aspects
of language translation, including the way word order
tends to di�er across languages, so our basic IR transla-
tion approach is but an impressionistic model of the re-
lation between queries and documents relevant to them.
Since IBM called their most basic scheme Model 1, we
shall do the same for this rudimentary retrieval model.

A little algebraic manipulation shows that the prob-
ability of generating query q according to Model 1 can
be rewritten as

p(q jd) =

 (m jd)

mY
j=1

�
n

n+ 1
p(qj jd) +

1

n+ 1
t (w j <null>)

�

where
p(qj jd) =

X
w

t (qj jw) l (w jd) ;

with the document language model l (w jd) given by rel-
ative counts. Thus, we see that the query terms are gen-
erated using a mixture model|the document language
model provides the mixing weights for the translation

model, which has parameters t (q jw). An alternative
view (and terminology) for this model is to describe
it as a Hidden Markov Model, where the states corre-
spond to the words in the vocabulary, and the transi-
tion probabilities between states are proportional to the
word frequencies.

The simplest version of Model 1, which we will dis-
tinguish as Model 0, is the one for which each word w
can be translated only as itself; that is, the translation
probabilities are \diagonal":

t (q jw) =
n
1 if q = w

0 otherwise .

In this case, the query generation model is given by

p(q jd) =
n

n+ 1
l (q jd) +

1

n+ 1
t (w j <null>) ;

a linear interpolation of the document language model
and the backgroundmodel associated with the null word.

3.2. Model 10: A binomial model

Our imaginary information analyst, when asked to gen-
erate a brief list of descriptive terms for a document, is
unlikely to list multiple occurrences of the same word.
To account for this assumption in terms of a statisti-
cal model, we assume that a list of words is generated
by making several independent translations of the doc-
ument d into a single query term q, in the following
manner. First, the analyst chooses a word w at random
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from the document. He chooses this word according to
the document language model l (w jd). Next, he trans-
lates w into the word or phrase q according to the trans-
lation model t (q jw). Thus, the probability of choosing
q as a representative of the document d is

p(q jd) =
X
w2 d

l (w jd) t (q jw):

We assume that the analyst repeats this process n times,
where n is chosen according to the sample size model

�(n jd), and that the resulting list of words is �ltered
to remove duplicates before it is presented as the sum-
mary, or query, q = q1; q2; : : : qm.

In order to calculate the probability that a particular
query q is generated in this way, we need to sum over
all sample sizes n, and consider that each of the terms
qi may have been generated multiple times. Thus, the
process described above assigns to q a total probability

p(q jd) =

X
n

�(n jd)
X
n1>0

� � �
X
nm>0

�
n

n1 � � �nm

� mY
i=1

p(qi jd)
ni

In spite of its intimidating appearance, this expression
can be calculated e�ciently using simple combinatorial
identities and dynamic programming techniques. In-
stead of pursuing this path, we will assume that the
number of samples n is chosen according to a Poisson
distribution with mean �(d):

�(n jd) = e

��(d)�(d)
n

n!
:

Under this assumption, the above sum takes on a much
friendlier appearance:

p(q jd) = e

��(d)
mY
i=1

�
e

�(d) p(qi jd) � 1
�
: (4)

This formula shows that the probability of the query
is given as a product of terms. Yet the query term
translations are not independent, due to the process of
�ltering out the generated list to remove duplicates. We
refer to the model expressed in equation (4) asModel 1

0.

Model 10 has an interpretation in terms of binomial
random variables. Suppose that a word w does not

belong to the query with probability �w = e
��(d)p(w jd).

Then Model 10 amounts to 
ipping independent �w-
biased coins to determine which set of words comprise
the query. That is, we can reexpress the probability
p(q jd) of equation (4) as

p(q jd) =
Y
w2 q

(1� �w)
Y
w2= q

�w :

Our use of this model was inspired by another IBM
statistical translation model, one that was designed for
modeling a bilingual dictionary [5].

Model 10 also has an interpretation in the degener-
ate case of diagonal translation probabilities. To see
this, let us make a further simpli�cation by �xing the
average number of samples to be a constant � indepen-
dent of the document d, and suppose that the expected
number of times a query word is drawn is less than one,
so that maxi �l (qi jd) < 1. Then to �rst order, the
probability assigned to the query according to Model 10

is a constant times the product of the language model
probabilities:

p(q = q1; : : : ; qm jd) � e

��
�

m

mY
i=1

l (qi jd) : (5)

Since the mean � is �xed for all documents, the doc-
ument that maximizes the righthand side of the above
expression is that which maximizes

Q
m

i=1 l (qi jd). This
is precisely the value assigned to the query in what
Ponte and Croft (1998) call the \language modeling ap-
proach."

4 Building a Translation-Based IR System

We now describe an implementation of the models de-
scribed in the previous section, and their application to
TREC data. The key ingredient in these models is the
collection of translation probabilities t (q jw). But how
are we to obtain these probabilities? The statistical
translation strategy is to learn these probabilities from
an aligned bilingual corpus of translated sentences, us-
ing the likelihood criterion. Ideally, we should have a
collection of query/document pairs to learn from, ob-
tained by human relevance judgments. But we know of
no publicly-available collection of data su�ciently large
to estimate parameters for general queries.

4.1. Synthetic training data

Lacking a large corpus of queries and their associated
relevant documents, we decided to tease out the se-
mantic relationships among words by generating syn-

thetic queries for a large collection of documents and
estimating the translation probabilities from this syn-
thetic data. To explain the rationale for this scheme, we
return to our �ctitious information analyst, and recall
that when presented with a document d, he will tend
to select terms that are suggestive of the content of the
document. Suppose now that he himself selects an ar-
bitrary document d from a database D, and asks us to
guess, based only upon his summary q, which document
he chose. The amount by which we are able to do better,
on average, than randomly guessing a document from
D is the mutual information I(D;Q) = H(D)�H(D jQ)
between the random variables representing his choice of
document D and query Q. Here H(D) is the entropy in
the analyst's choice of document, and H(D jQ) is the
conditional entropy of the document given the query. If
he is playing this game cooperatively, he will generate
queries for which this mutual information is large.

With this game in mind, we took a collection of
TREC documents D, and for each document d in the
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q t (q jw)
solzhenitsyn 0.319

citizenship 0.049

exile 0.044

archipelago 0.030

alexander 0.025

soviet 0.023

union 0.018

komsomolskaya 0.017

treason 0.015

vishnevskaya 0.015

w = solzhenitsyn

q t (q jw)
carcinogen 0.667

cancer 0.032

scientific 0.024

science 0.014

environment 0.013

chemical 0.012

exposure 0.012

pesticide 0.010

agent 0.009

protect 0.008

w = carcinogen

q t (q jw)
zubin mehta 0.248

zubin 0.139

mehta 0.134

philharmonic 0.103

orchestra 0.046

music 0.036

bernstein 0.029

york 0.026

end 0.018

sir 0.016

w = zubin

q t (q jw)
pontiff 0.502

pope 0.169

paul 0.065

john 0.035

vatican 0.033

ii 0.028

visit 0.017

papal 0.010

church 0.005

flight 0.004

w = pontiff

q t (q jw)
everest 0.439

climb 0.057

climber 0.045

whittaker 0.039

expedition 0.036

float 0.024

mountain 0.024

summit 0.021

highest 0.018

reach 0.015

w = everest

q t (q jw)
wildlife 0.705

fish 0.038

acre 0.012

species 0.010

forest 0.010

environment 0.009

habitat 0.008

endangered 0.007

protected 0.007

bird 0.007

w = wildlife

Figure 2. Sample translation probabilities after EM training on synthetic data.

collection, computed the mutual information statistic
I(w;d) for each of its words according to

I(w;d) = p(w;d) log
p(w jd)

p(w j D)
:

Here p(w jd) is the probability of the word in the doc-
ument, and p(w j D) is the probability of the word in
the collection at large. By scaling these I(w;d) values
appropriately, we constructed an arti�cial cumulative
distribution function over words in each document. We
then drew m � �(� jd) random samples from the doc-
ument according to this distribution, forming a query
q = q1; : : : ; qm, and several such queries were generated
for each document.

4.2. EM training

The resulting corpus f(d;q)g of documents and syn-
thetic queries was used to �t the translation probabili-
ties of Models 1 and 10 with the EM algorithm [7], run
for only three iterations as a means to avoid over�t-
ting. Space limitations prevent us from explaining the
details of the training process, but enough detail to en-
able implementation can be found in the papers [4, 5],
which describe very similar models. A sample of the
resulting translation probabilities, when trained on the
Associated Press (AP) portion of the TREC volume 3
corpus, is shown in Figure 2. In this �gure, a docu-
ment word is shown together with the ten most proba-
ble query words that it will translate to according to the
model. The probabilities in these tables are among the
47,065,200 translation probabilities that were trained
for our 132,625 word vocabulary. They were estimated

from a corpus obtained by generating �ve synthetic mu-
tual information queries for each of the 78,325 docu-
ments in the collection.

For statistical models of this form, smoothing or in-
terpolating the parameters away from their maximum
likelihood estimates is important. We used a linear in-
terpolation of the background unigram model and the
EM-trained translation model:

p�(q jd) = � p(q j D) + (1� �) p(q jd)

= � p(q j D) + (1� �)
X
w2 d

l (w jd) t (q jw) :

The weight was empirically set to � = 0:05 on heldout
data. The models for the baseline language modeling
approach, or Model 0, were also smoothed using linear
interpolation:

l
(w jd) = 
 p(w j D) + (1� 
) l (w jd) :

This interpolation weight was simply �xed at 
 = 0:1.
The Poisson parameter for the sample size distribution
was �xed at � = 15, independent of the document. No
adjustment of any parameters, other than those deter-
mined by unsupervised EM training of the translation
probabilities, was carried out on the TREC volume 3
data that we ran our evaluation on.

5 Experimental Results on TREC Data

In this section we summarize the quantitative results
of using the models described in the previous two sec-
tions to rank documents for a set of queries. Though
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Figure 3. Precision-recall curves on TREC data. The two plots in the top row compare the performance of
Models 1 and 10 to the baseline t�df and Model 0 performance on AP data (left) and SJMN data (right) when
ranking documents for queries formulated from the concept �elds for topics 51{100. The middle row shows the
discrepancy between two and three EM iterations of training for Model 10 (left) and the performance of models
on the short (average 2.8 words/query) queries obtained from the title �eld of topics 51{100 (right). The bottom
row compares Models 1 and 10 to Model 0 and t�df on the SDR data (left) and the same language model scored
according to Model 0 and using the product

Qm

i=1 l (qi jd), demonstrating that the approximation in equation (5) is
very good (right).
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not a real-time computation, calculating the relevance
score �q(d) for each query can be done quickly enough
to obviate the need for a \fast match" to throw out
documents that are clearly irrelevant.

Our experiments fall into three categories. First,
we report on a series of experiments carried out on
the AP portion of the TREC data from volume 3 for
both the concept and title �elds in topics 51{100. The
concept �eld queries comprise a set of roughly 20 key-
words, while the title �elds are much more succinct|
typically not more than four words. Next, we tabulate
a corresponding series of experiments carried out on
the 90,250 document San Jose Mercury News (SJMN)
portion of the data, also evaluated on topics 51{100.
Finally, we present results on the Spoken Document

Retrieval (SDR) track of the 1998 TREC evaluation,
a small collection of 2,866 broadcast news transcripts.
All of the data is preprocessed by converting to upper
case, stemming, and �ltering with a list of 571 stop-
words from the SMART system.

Precision-recall curves for the AP and SJMN data,
generated from the output of the TREC evaluation soft-
ware, appear in Figure 3. The baseline curves in these
plots show the performance of the t�df measure using
Robertson's tf score, as described by Ponte in [9]. They
also show the result of using Model 0 to score the docu-
ments, using only word-for-word translations. In this
approach, documents receive high relevance scores if
they contain terms appearing in the query. Model 1 im-
proves the average precision over the t�df baseline by
19.4% on the AP data, and by 27.3% on the SJMN data.
The R-precision improves by 10.0% on the AP data and
by 22.8% on the SJMN data. The actual numbers for
AP are collected in Table 1.

As discussed earlier, over�tting during EM train-
ing is a concern. Figure 3 shows the performance of
Model 10 on the AP data when the probabilities are
trained for two and three EM iterations. To study the
e�ects of query length on the models, we also scored the
documents for the title �elds of topics 51{100, where
the average query length is only 2.8 words. As the mid-
dle right plot of Figure 3 reveals, the precision-recall
curves are qualitatively di�erent, showing a degradation
in performance in the high-precision range. Overall,
Model 1 achieves an improvement over the t�df baseline
of 30.2% in average precision and 17.8% in R-precision
on these short queries. The marginal improvement of
Model 1 over Model 0 is smaller here|6.3% in average
precision and 4.9% in R-precision.

Two precision-recall plots for the SDR task are given.
The bottom left plot of Figure 3 shows the improvement
of Model 1 over the baseline. There is an improvement
of 22.2% in average precision and 18.4% in R-precision.
The bottom right plot compares Model 00 to the re-
sult of ranking documents according to the probabilityQm

i=1 l (qi jd) for the same language model, as in Ponte
and Croft's method. There is very little di�erence in
the results, showing that equation (5) is indeed a good
approximation.

t�df Model 1 %�

Relevant: 5845 5845 |

Rel.ret.: 5845 5845 |

Precision:

at 0.00 0.6257 0.7125 +13.9

at 0.10 0.5231 0.5916 +13.1

at 0.20 0.4569 0.5217 +14.2

at 0.30 0.3890 0.4554 +17.1

at 0.40 0.3425 0.4119 +20.3

at 0.50 0.3035 0.3636 +19.8

at 0.60 0.2549 0.3148 +23.5

at 0.70 0.2117 0.2698 +27.4

at 0.80 0.1698 0.2221 +30.8

at 0.90 0.1123 0.1580 +40.7

at 1.00 0.0271 0.0462 +70.5

Avg.: 0.2993 0.3575 +19.4

Precision at:

5 docs: 0.4809 0.5574 +15.9

10 docs: 0.4702 0.5170 +10.0

15 docs: 0.4326 0.5135 +18.7

20 docs: 0.4213 0.4851 +15.1

30 docs: 0.3894 0.4539 +16.6

100 docs: 0.2960 0.3419 +15.5

200 docs: 0.2350 0.2653 +12.9

500 docs: 0.1466 0.1610 +9.8

1000 docs: 0.0899 0.0980 +9.0

R-Precision: 0.3254 0.3578 +10.0

Table 1. Model 1 compared to the baseline system
for queries constructed from the concept �elds. These
numbers correspond to the upper left plot in Figure 3.

6 Discussion

Viewing a user's interaction with an information re-
trieval system as translation of an information need into
a query is natural. Exactly this formulation is made in
a recent overview of issues in information science pre-
sented to the theoretical computer science community
[2]. In this paper we have attempted to lay the ground-
work for building practical IR systems that exploit this
view, by demonstrating how statistical translation mod-
els can be built and used to advantage.

When designing a statistical model for language pro-
cessing tasks, often the most natural route is to apply
a generative model which builds up the output step-
by-step. Yet to be e�ective, such models need to lib-
erally distribute probability mass over a huge space of
possible outcomes. This probability can be di�cult to
control, making an accurate direct model of the distri-
bution of interest di�cult to construct. The source-
channel perspective suggests a di�erent approach: turn
the search problem around to predict the input. Far
more than a simple application of Bayes' law, there are
compelling reasons why reformulating the problem in
this way should be rewarding. In speech recognition,
natural language processing, and machine translation,
researchers have time and again found that predicting
what is already known (i.e., the query) from competing
hypotheses can be more e�ective than directly predict-
ing all of the hypotheses.

Our simple models only begin to tap the potential
of the translation-based approach. More powerful mod-
els of the query generation process, even along the lines
of IBM's more complex models of translation, should



www.manaraa.com

o�er performance gains. For example, one of the fun-
damental notions of statistical translation is the idea of
fertility, where a source word can generate zero or more
words in the target sentence. While there appears to
be no good reason why a word selected from the doc-
ument should generate more than a single query term
per trial, we should allow for infertility probabilities,
where a word generates no terms at all. The use of stop
word lists mitigates but does not eliminate the need for
this improvement. The use of distortion probabilities
could be important for discounting relevant words that
appear toward the end of a document, and rewarding
those that appear at the beginning. Many other natural
extensions to the model are possible.

Our discussion has made the usual \bag of words"
assumption about documents, ignoring word order for
the sake of simplicity and computational ease. But the
relative ordering of words is informative in almost all
applications, and crucial in some. The sense of a word is
often revealed by nearby words, and so by heeding con-
textual clues, one might hope to obtain a more accurate
translation from document words to query words.

The retrieval-as-translation approach applies quite
naturally to the problem of multilingual retrieval, where
a user issues queries in a language T to retrieve docu-
ments in a source language S. The most direct approach
to multilingual IR expands the query qT to q0

T
and

then translates directly into a source language query
q0
S
, which is then issued to the database. The retrieval-

as-translation approach would learn translation models
which capture how words in S translate to words in
T . The source-channel framework should also be well-
suited to \higher-order" IR tasks, such as fact extrac-
tion and question answering from a database.

7 Conclusions

We have presented an approach to information retrieval
that exploits ideas and methods of statistical machine
translation. After outlining the approach, we presented
two simple, motivated models of the document-query
translation process. With the EM algorithm, the pa-
rameters of these models can be trained in an unsu-
pervised fashion from a collection of documents. Ex-
periments on TREC datasets demonstrate that even
these simple methods can yield substantial improve-
ments over standard baseline vector space methods, but
without explicit query expansion and term weighting
schemes, which are inherent in the translation approach
itself.
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